Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 602(5): 855-873, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38376957

RESUMO

Myoglobin (Mb) plays an important role at rest and during exercise as a reservoir of oxygen and has been suggested to regulate NO• bioavailability under hypoxic/acidic conditions. However, its ultimate role during exercise is still a subject of debate. We aimed to study the effect of Mb deficiency on maximal oxygen uptake ( V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ ) and exercise performance in myoglobin knockout mice (Mb-/- ) when compared to control mice (Mb+/+ ). Furthermore, we also studied NO• bioavailability, assessed as nitrite (NO2 - ) and nitrate (NO3 - ) in the heart, locomotory muscle and in plasma, at rest and during exercise at exhaustion both in Mb-/- and in Mb+/+ mice. The mice performed maximal running incremental exercise on a treadmill with whole-body gas exchange measurements. The Mb-/- mice had lower body mass, heart and hind limb muscle mass (P < 0.001). Mb-/- mice had significantly reduced maximal running performance (P < 0.001). V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ expressed in ml min-1 in Mb-/ - mice was 37% lower than in Mb+/+ mice (P < 0.001) and 13% lower when expressed in ml min-1  kg body mass-1 (P = 0.001). Additionally, Mb-/- mice had significantly lower plasma, heart and locomotory muscle NO2 - levels at rest. During exercise NO2 - increased significantly in the heart and locomotory muscles of Mb-/- and Mb+/+ mice, whereas no significant changes in NO2 - were found in plasma. Our study showed that, contrary to recent suggestions, Mb deficiency significantly impairs V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ and maximal running performance in mice. KEY POINTS: Myoglobin knockout mice (Mb-/- ) possess lower maximal oxygen uptake ( V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ ) and poorer maximal running performance than control mice (Mb+/+ ). Respiratory exchange ratio values at high running velocities in Mb-/- mice are higher than in control mice suggesting a shift in substrate utilization towards glucose metabolism in Mb-/- mice at the same running velocities. Lack of myoglobin lowers basal systemic and muscle NO• bioavailability, but does not affect exercise-induced NO2 - changes in plasma, heart and locomotory muscles. The present study demonstrates that myoglobin is of vital importance for V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_2}\max }}$ and maximal running performance as well as explains why previous studies have failed to prove such a role of myoglobin when using the Mb-/- mouse model.


Assuntos
Mioglobina , Corrida , Camundongos , Animais , Mioglobina/genética , Dióxido de Nitrogênio , Corrida/fisiologia , Oxigênio , Teste de Esforço , Camundongos Knockout , Consumo de Oxigênio/fisiologia
2.
J Am Heart Assoc ; 13(2): e031085, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38214271

RESUMO

BACKGROUND: Skeletal muscles are postulated to be a potent regulator of systemic nitric oxide homeostasis. In this study, we aimed to evaluate the impact of physical training on the heart and skeletal muscle nitric oxide bioavailability (judged on the basis of intramuscular nitrite and nitrate) in rats. METHODS AND RESULTS: Rats were trained on a treadmill for 8 weeks, performing mainly endurance running sessions with some sprinting runs. Muscle nitrite (NO2-) and nitrate (NO3-) concentrations were measured using a high-performance liquid chromatography-based method, while amino acids, pyruvate, lactate, and reduced and oxidized glutathione were determined using a liquid chromatography coupled with tandem mass spectrometry technique. The content of muscle nitrite reductases (electron transport chain proteins, myoglobin, and xanthine oxidase) was assessed by western immunoblotting. We found that 8 weeks of endurance training decreased basal NO2- in the locomotory muscles and in the heart, without changes in the basal NO3-. In the slow-twitch oxidative soleus muscle, the decrease in NO2- was already present after the first week of training, and the content of nitrite reductases remained unchanged throughout the entire period of training, except for the electron transport chain protein content, which increased no sooner than after 8 weeks of training. CONCLUSIONS: Muscle NO2- level, opposed to NO3-, decreases in the time course of training. This effect is rapid and already visible in the slow-oxidative soleus after the first week of training. The underlying mechanisms of training-induced muscle NO2- decrease may involve an increase in the oxidative stress, as well as metabolite changes related to an increased muscle anaerobic glycolytic activity contributing to (1) direct chemical reduction of NO2- or (2) activation of muscle nitrite reductases.


Assuntos
Nitratos , Condicionamento Físico Animal , Ratos , Animais , Nitratos/metabolismo , Nitritos , Óxido Nítrico/metabolismo , Dióxido de Nitrogênio/metabolismo , Músculo Esquelético/metabolismo , Exercício Físico , Nitrito Redutases/metabolismo
3.
Sci Rep ; 13(1): 3502, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859449

RESUMO

Professional athletes are often exposed to high training loads that may lead to overfatigue, overreaching and overtraining that might have a detrimental effects on vascular health. We determined the effects of high training stress on endothelial function assessed by the flow-mediated dilation (FMD) and markers of glycocalyx shedding. Vascular examination as well as broad biochemical, hormonal and cardiometabolic evaluation of sprint and middle-distance female runners were performed after 2 months of preparatory training period and compared to age-matched control group of women. Female athletes presented with significantly reduced FMD (p < 0.01) and higher basal serum concentrations of hyaluronan (HA) and syndecan-1 (SDC-1) (p < 0.05 and p < 0.001, respectively), that was accompanied by significantly lower basal serum testosterone (T) and free testosterone (fT) concentrations (p < 0.05) and higher cortisol (C) concentration (p < 0.05). It resulted in significantly lower T/C and fT/C ratios in athletes when compared to controls (p < 0.01). Moreover, fT/C ratio were significantly positively correlated to FMD and negatively to HA concentrations in all studied women. Accordingly, the training load was significantly negatively correlated with T/C, fT/C and FMD and positively with the concentrations of HA and SDC-1. We concluded that young female track and field athletes subjected to physical training developed impairment of endothelial function that was associated with anabolic-catabolic hormone balance disturbances. Given that training-induced impairment of endothelial function may have a detrimental effects on vascular health, endothelial status should be regularly monitored in the time-course of training process to minimalize vascular health-risk in athletes.


Assuntos
Endotélio Vascular , Atletismo , Feminino , Humanos , Atletas , Ácido Hialurônico/sangue , Distúrbios Menstruais , Testosterona/sangue , Endotélio Vascular/fisiopatologia
4.
Exp Gerontol ; 173: 112104, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36693531

RESUMO

INTRODUCTION: The effect of androgens on the cardiovascular system in humans is ambiguous. Moreover, still little is known about the effects of the most potent androgen, dihydrotestosterone, on arterial stiffness and endothelial function. The aim of this study was to evaluate whether age-dependent alterations in serum concentration of dihydrotestosterone and its circulating metabolite are accompanied by changes in endothelial function and arterial stiffness. METHODS: In 12 young and 11 older men, basal serum concentrations of testosterone, dehydroepiandrosterone sulfate (DHAE-S), androstenedione (AE), dihydrotestosterone (DHT) and androstanediol glucuronide (ADG) were analyzed in relation to vascular status including cIMT - carotid intima media thickness, cAI - central augmentation index, crPWV - carotid radial pulse wave velocity, SI - stiffness index, endothelial and inflammatory markers. RESULTS: Although concentration of testosterone was not different between young and older group, it was demonstrated that DHT, DHEA-S, AE and ADG were significantly lower in older men in comparison to young men (p < 0.01). Interestingly the most surprising difference was found for DHT concentration, that was as much as 61 % lower in aged men that displayed significantly higher values of cIMT, AI, crPWV and SI (p < 10-4), suggestive of arterial stiffness. Furthermore, DHT was negatively correlated to all arterial wall parameters (cAI, crPWV, SI and cIMT), c-reactive protein (CRP) and hyaluronic acid (HA) concentration, as well as positively correlated to markers of endothelial function (MNA and 6-keto-PGF1α) in all studied individuals (n = 23). CONCLUSIONS: We have shown that ageing leads to a significant decrease in DHT concentration that is accompanied by impaired arterial wall characteristics and worsened endothelial function. Therefore more attention should be paid to the DHT, DHEA-S and ADG concentrations as a biomarkers for vascular dysfunction in ageing men.


Assuntos
Di-Hidrotestosterona , Rigidez Vascular , Idoso , Humanos , Masculino , Androgênios , Androstenodiona , Artérias Carótidas , Espessura Intima-Media Carotídea , Desidroepiandrosterona , Di-Hidrotestosterona/metabolismo , Análise de Onda de Pulso , Adulto , Envelhecimento
5.
PeerJ ; 10: e14228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36348663

RESUMO

Angiogenesis is the physiological process of capillary growth. It is strictly regulated by the balanced activity of agents that promote the formation of capillaries (pro-angiogenic factors) on the one hand and inhibit their growth on the other hand (anti-angiogenic factors). Capillary rarefaction and insufficient angiogenesis are some of the main causes that limit blood flow during aging, whereas physical training is a potent non-pharmacological method to intensify capillary growth in the musculoskeletal system. The main purpose of this study is to present the current state of knowledge concerning the key signalling molecules implicated in the regulation of skeletal muscle and bone angiogenesis during aging and physical training.


Assuntos
Exercício Físico , Músculo Esquelético , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica/fisiologia , Fenômenos Fisiológicos Cardiovasculares
6.
Int J Mol Sci ; 23(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36142755

RESUMO

The activity and quantity of mitochondrial proteins and the mitochondrial volume density (MitoVD) are higher in trained muscles; however, the underlying mechanisms remain unclear. Our goal was to determine if 20 weeks' endurance training simultaneously increases running performance, the amount and activity of mitochondrial proteins, and MitoVD in the gastrocnemius muscle in humans. Eight healthy, untrained young men completed a 20-week moderate-intensity running training program. The training increased the mean speed of a 1500 m run by 14.0% (p = 0.008) and the running speed at 85% of maximal heart rate by 9.6% (p = 0.008). In the gastrocnemius muscle, training significantly increased mitochondrial dynamics markers, i.e., peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) by 23%, mitochondrial transcription factor A (TFAM) by 29%, optic artrophy-1 (OPA1) by 31% and mitochondrial fission factor (MFF) by 44%, and voltage-dependent anion channel 1 (VDAC1) by 30%. Furthermore, training increased the amount and maximal activity of citrate synthase (CS) by 10% and 65%, respectively, and the amount and maximal activity of cytochrome c oxidase (COX) by 57% and 42%, respectively, but had no effect on the total MitoVD in the gastrocnemius muscle. We concluded that not MitoVD per se, but mitochondrial COX activity (reflecting oxidative phosphorylation activity), should be regarded as a biomarker of muscle adaptation to endurance training in beginner runners.


Assuntos
Treino Aeróbico , Condicionamento Físico Animal , Animais , Citrato (si)-Sintase/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Masculino , Proteínas Mitocondriais/metabolismo , Tamanho Mitocondrial , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Condicionamento Físico Animal/fisiologia , Canal de Ânion 1 Dependente de Voltagem/metabolismo
7.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269826

RESUMO

Skeletal muscles are an important reservoir of nitric oxide (NO•) stored in the form of nitrite [NO2-] and nitrate [NO3-] (NOx). Nitrite, which can be reduced to NO• under hypoxic and acidotic conditions, is considered a physiologically relevant, direct source of bioactive NO•. The aim of the present study was to determine the basal levels of NOx in striated muscles (including rat heart and locomotory muscles) with varied contents of tissue nitrite reductases, such as myoglobin and mitochondrial electron transport chain proteins (ETC-proteins). Muscle NOx was determined using a high-performance liquid chromatography-based method. Muscle proteins were evaluated using western-immunoblotting. We found that oxidative muscles with a higher content of ETC-proteins and myoglobin (such as the heart and slow-twitch locomotory muscles) have lower [NO2-] compared to fast-twitch muscles with a lower content of those proteins. The muscle type had no observed effect on the [NO3-]. Our results demonstrated that fast-twitch muscles possess greater potential to generate NO• via nitrite reduction than slow-twitch muscles and the heart. This property might be of special importance for fast skeletal muscles during strenuous exercise and/or hypoxia since it might support muscle blood flow via additional NO• provision (acidic/hypoxic vasodilation) and delay muscle fatigue.


Assuntos
Mioglobina , Nitritos , Animais , Hipóxia/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Mioglobina/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Dióxido de Nitrogênio/farmacologia , Ratos
8.
Front Endocrinol (Lausanne) ; 12: 735638, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566895

RESUMO

The negative relationship between testosterone and inflammatory cytokines has been reported for decades, although the exact mechanisms of their interactions are still not clear. At the same time, little is known about the relation between androgens and acute phase proteins. Therefore, in this investigation, we aimed to study the relationship between androgen status and inflammatory acute phase reactants in a group of men using multi-linear regression analysis. Venous blood samples were taken from 149 men ranging in age from 18 to 77 years. Gonadal androgens [testosterone (T) and free testosterone (fT)], acute phase reactants [C-reactive protein (CRP), ferritin (FER), alpha-1-acid glycoprotein (AAG), and interleukin-6 (IL-6)], cortisol (C), and lipid profile concentrations were determined. It was demonstrated that the markers of T and fT were negatively correlated with all acute phase proteins (CRP, FER, and AAG; p < 0.02) and the blood lipid profile [total cholesterol (TC), low-density lipoprotein (LDL), and triglycerides (TG); p < 0.03]. Multivariate analysis showed that T, fT, and the fT/C ratio were inversely correlated with the CRP, AAG, and FER concentrations independently of age and blood lipids. When adjustment for BMI was made, T, fT, and the fT/C ratio were negatively correlated with the AAG concentrations only. In addition, it was demonstrated that gonadal androgens were positively correlated with physical activity level (p < 0.01). We have concluded that a lowered serum T concentration may promote inflammatory processes independently of adipose tissue and age through a reduced inhibition of inflammatory cytokine synthesis, which leads to enhanced acute phase protein production. Therefore, a low serum T concentration appears to be an independent risk factor in the development of atherosclerosis and cardiovascular diseases. Moreover, the positive correlation between testosterone and physical activity level suggests that exercise training attenuates the age-related decrease in gonadal androgens and, in this way, may reduce the enhancement of systemic low-grade inflammation in aging men.


Assuntos
Inflamação/sangue , Lipídeos/sangue , Testosterona/sangue , Tecido Adiposo/metabolismo , Adolescente , Adulto , Fatores Etários , Idoso , Proteína C-Reativa/metabolismo , Humanos , Hidrocortisona/sangue , Masculino , Pessoa de Meia-Idade , Triglicerídeos/sangue , Adulto Jovem
9.
Front Physiol ; 12: 652299, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054571

RESUMO

Post-tetanic potentiation (PTP) of force depends on intramuscular Ca2+ levels and sensitivity and may be affected by fatigue. The aim of this study was to determine the ability of isolated fast fatigue-resistant (FR) and fast-fatigable (FF) motor units (MUs) to potentiate force evoked with single and 40-Hz electrical stimulation after 5 weeks of voluntary weight-lifting training. Tetanic contractions evoked by gradually increasing (10-150 Hz) stimulation frequency served as conditioning stimulation. Additionally, the concentration of myosin light chain kinase and proteins engaged in calcium handling was measured in rat fast medial gastrocnemius muscle. After the training, the potentiation of twitch force and peak rate of force development was increased in FF but not FR MUs. Force potentiation of 40-Hz tetanic contractions was increased in both fast MU types. After the training, the twitch duration of FR MUs was decreased, and FF MUs were less prone to high-frequency fatigue during conditioning stimulation. Muscle concentration of triadin was increased, whereas concentrations of ryanodine receptor 1, junctin, FKBP12, sarcoplasmic reticulum calcium ATPase 1, parvalbumin, myosin light chain kinase, and actomyosin adenosine triphosphatase content were not modified. After short-term resistance training, the twitch contraction time and twitch:tetanus force ratio of FR MUs are decreased, and PTP ability is not changed. However, PTP capacity is increased in response to submaximal activation. In FF MUs increase in PTP ability coexists with lesser fatigability. Further work is required to find out if the increase in triadin concentration has any impact on the observed contractile response.

10.
Free Radic Biol Med ; 161: 163-174, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33075501

RESUMO

We elucidated the impact of eight weeks of endurance training on the oxidative metabolism of rat lungs. Adult 3.5-month-old male rats were randomly allocated to a treadmill training group or a sedentary group as control. In the lungs, endurance training raised the expression level of the oxygen sensors hypoxia inducible factor 1α (HIF1α) and lysine-specific demethylase 6A (KDM6A) as well as stimulated mitochondrial oxidative capacity and mitochondrial biogenesis, while lactate dehydrogenase activity was reduced. Endurance training enhanced antioxidant systems (the coenzyme Q content and superoxide dismutase) in lung tissue but decreased them (and uncoupling protein 2) in lung mitochondria. In the lung mitochondria of trained rats, the decreased Q content and Complex I (CI) activity and the enhanced cytochrome pathway activity (CIII + CIV) may account for the diminished Q reduction level, resulting in a general decrease in H2O2 formation by mitochondria. Endurance training enhanced oxidation of glutamate and fatty acids and caused opposite effects in functional mitochondrial properties during malate and succinate oxidation, which were related to reduced activity of CI and increased activity of CII, respectively. In addition, endurance training downregulated CI in supercomplexes and upregulated CIII in the CIII2+CIV supercomplex in the oxidative phosphorylation system. We concluded that the adaptive lung responses observed could be due to hypoxia and oxidative stress induced by strenuous endurance training.


Assuntos
Treino Aeróbico , Condicionamento Físico Animal , Adulto , Animais , Humanos , Peróxido de Hidrogênio/metabolismo , Pulmão , Masculino , Mitocôndrias , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Resistência Física , Ratos
11.
Physiol Rep ; 8(8): e14412, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32319199

RESUMO

Bone morphogenetic protein 4 (BMP4) plays an important role in bone remodeling and in heart failure pathogenesis. The aim of this study was to evaluate the effect of spontaneous physical activity on the expression of BMP4 in the heart and tibia of the transgenic (Tgαq*44) mice, representing a model of chronic heart failure. Tgαq*44 and wild-type FVB mice (WT) were randomly assigned either to sedentary or to trained groups undergoing 8 weeks of spontaneous wheel running. The BMP4 protein expression in heart and tibiae was evaluated using Western immunoblotting and the phosphorus and calcium in the tibiae was assessed using the X-ray microanalysis. BMP4 content in the hearts of the Tgαq*44-sedentary mice was by ~490% higher than in the WT-sedentary mice, whereas in tibiae the BMP4 content of the Tgαq*44-sedentary mice was similar to that in the WT-sedentary animals. Tgαq*44 mice revealed by ~28% poorer spontaneous physical activity than the WT mice. No effect of performed physical activity on the BMP4 content in the hearts of either in the Tgαq*44 or WT mice was observed. However, 8-week spontaneous wheel running resulted in a decrease in the BMP4 expression in tibiae (by ~43%) in the group of Tgαq*44 mice only, with no changes in their bone phosphorus and calcium contents. We have concluded that prolonged period of spontaneous physical exercise does not increase the risk of the progression of the BMP4-mediated pathological cardiac hypertrophy and does not affect bone mineral status in the chronic heart failure mice.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/terapia , Miocárdio/metabolismo , Condicionamento Físico Animal/fisiologia , Tíbia/metabolismo , Animais , Calcificação Fisiológica , Cardiomegalia/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Camundongos , Camundongos Transgênicos , Atividade Motora/fisiologia
12.
PeerJ ; 8: e10491, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391874

RESUMO

BACKGROUND: Branched-chain amino acids (BCAA) i.e., leucine (Leu), isoleucine (Ile) and valine (Val) are important amino acids, which metabolism play a role in maintaining system energy homeostasis at rest and during exercise. As recently shown lowering of circulating BCAA level improves insulin sensitivity and cardiac metabolic health. However, little is known concerning the impact of a single bout of incremental exercise and physical training on the changes in blood BCAA. The present study aimed to determine the impact of a gradually increasing exercise intensity-up to maximal oxygen uptake (VO2max) on the changes of the plasma BCAA [∑BCAA]pl, before and after 5-weeks of moderate-intensity endurance training (ET). METHODS: Ten healthy young, untrained men performed an incremental cycling exercise test up to exhaustion to reach VO2max, before and after ET. RESULTS: We have found that exercise of low-to-moderate intensity (up to ∼50% of VO2max lasting about 12 min) had no significant effect on the [∑BCAA]pl, however the exercise of higher intensity (above 70% of VO2max lasting about 10 min) resulted in a pronounced decrease (p < 0.05) in [∑BCAA]pl. The lowering of plasma BCAA when performing exercise of higher intensity was preceded by a significant increase in plasma lactate concentration, showing that a significant attenuation of BCAA during incremental exercise coincides with exercise-induced acceleration of glycogen utilization. In addition, endurance training, which significantly increased power generating capabilities at VO2max (p = 0.004) had no significant impact on the changes of [∑BCAA]pl during this incremental exercise. CONCLUSION: We have concluded that an exercise of moderate intensity of relatively short duration generally has no effect on the [∑BCAA]pl in young, healthy men, whereas significant decrease in [∑BCAA]pl occurs when performing exercise in heavy-intensity domain. The impact of exercise intensity on the plasma BCAA concentration seems to be especially important for patients with cardiometabolic risk undertaken cardiac rehabilitation or recreational activity.

13.
J Am Heart Assoc ; 8(18): e012670, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31512551

RESUMO

Background Physical activity is generally considered to exert positive effects on the cardiovascular system in humans. However, surprisingly little is known about the delayed effect of professional physical training performed at a young age on endothelial function and arterial stiffness in aging athletes. The present study aimed to assess the impact of long-lasting professional physical training (endurance and sprint) performed at a young age on the endothelial function and arterial stiffness reported in older age in relation to glycocalyx injury, prostacyclin and nitric oxide production, inflammation, basal blood lipid profile, and glucose homeostasis. Methods and Results This study involved 94 male subjects with varied training backgrounds, including young athletes (mean age ∼25 years), older former high class athletes (mean age ∼60 years), and aged-matched untrained control groups. Aging increased arterial stiffness, as reflected by an enhancement in pulse wave velocity, augmentation index, and stiffness index (P<10-4), as well as decreased endothelial function, as judged by the attenuation of flow-mediated vasodilation (FMD) in the brachial artery (P=0.03). Surprisingly, no effect of the training performed at a young age on endothelial function and arterial stiffness was observed in the former athletes. Moreover, no effect of training performed at a young age (P>0.05) on blood lipid profile, markers of inflammation, and glycocalyx shedding were observed in the former athletes. Conclusions Our study clearly shows that aging, but not physical training history, represents the main contributing factor responsible for decline in endothelial function and increase in arterial stiffness in former athletes.


Assuntos
Envelhecimento/fisiologia , Atletas , Endotélio Vascular/fisiopatologia , Rigidez Vascular/fisiologia , Vasodilatação/fisiologia , Adolescente , Adulto , Fatores Etários , Idoso , Estudos de Casos e Controles , Treino Aeróbico , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Onda de Pulso , Adulto Jovem
14.
Physiol Rep ; 7(13): e14161, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31267722

RESUMO

Physical activity is emerging as an alternative nonpharmaceutical strategy to prevent and treat a variety of cardiovascular diseases due to its cardiac and skeletal muscle beneficial effects. Oxidative stress occurs in skeletal muscle of chronic heart failure (CHF) patients with possible impact on muscle function decline. We determined the effect of voluntary-free wheel running (VFWR) in preventing protein damage in Tgαq*44 transgenic mice (Tg) characterized by a delayed CHF progression. In the early (6 months) and transition (12 months) phase of CHF, VFWR increased the daily mean distance covered by Tg mice eliminating the difference between Tg and WT present before exercise at 12 months of age (WT Pre-EX 3.62 ± 1.66 vs. Tg Pre-EX 1.51 ± 1.09 km, P < 0.005; WT Post-EX 5.72 ± 3.42 vs. Tg Post-EX 4.17 ± 1.8 km, P > 0.005). This effect was concomitant with an improvement of in vivo cardiac performance [(Cardiac Index (mL/min/cm2 ): 6 months, untrained-Tg 0.167 ± 0.005 vs. trained-Tg 0.21 ± 0.003, P < 0.005; 12 months, untrained-Tg 0.1 ± 0.009 vs. trained-Tg 0.133 ± 0.005, P < 0.005]. Such effects were associated with a skeletal muscle antioxidant response effective in preventing oxidative damage induced by CHF at the transition phase (untrained-Tg 0.438 ± 0.25 vs. trained-Tg 0.114 ± 0.010, P < 0.05) and with an increased expression of protein control markers (MuRF-1, untrained-Tg 1.12 ± 0.29 vs. trained-Tg 14.14 ± 3.04, P < 0.0001; Atrogin-1, untrained-Tg 0.9 ± 0.38 vs. trained-Tg 7.79 ± 2.03, P < 0.01; Cathepsin L, untrained-Tg 0.91 ± 0.27 vs. trained-Tg 2.14 ± 0.55, P < 0.01). At the end-stage of CHF (14 months), trained-Tg mice showed a worsening of physical performance (decrease in daily activity and weekly distance and time of activity) compared to trained age-matched WT in association with oxidative protein damage of a similar level to that of untrained-Tg mice (untrained-Tg 0.62 ± 0.24 vs. trained-Tg 0.64 ± 0.13, P > 0.05). Prolonged voluntary physical activity performed before the onset of CHF end-stage, appears to be a useful tool to increase cardiac function and to reduce skeletal muscle oxidative damage counteracting physical activity decline.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/métodos , Corrida , Animais , Catepsina L/genética , Catepsina L/metabolismo , Feminino , Coração/fisiologia , Insuficiência Cardíaca/prevenção & controle , Camundongos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
PLoS One ; 13(4): e0195704, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29672614

RESUMO

This study aimed at investigating the effects of 2, 4 and 8 weeks of endurance training on the contractile properties of slow (S), fast fatigue resistant (FR) and fast fatigable (FF) motor units (MUs) in rat medial gastrocnemius (MG) in relation to the changes in muscle mitochondrial biogenesis. The properties of functionally isolated MUs were examined in vivo. Mitochondrial biogenesis was judged based on the changes in mitochondrial DNA copy number (mtDNA), the content of the electron transport chain (ETC) proteins and PGC-1α in the MG. Moreover, the markers of mitochondria remodeling mitofusins (Mfn1, Mfn2) and dynamin-like protein (Opa1) were studied using qPCR. A proportion of FR MUs increased from 37.9% to 50.8% and a proportion of FF units decreased from 44.7% to 26.6% after 8 weeks of training. The increased fatigue resistance, shortened twitch duration, and increased ability to potentiate force were found as early as after 2 weeks of endurance training, predominantly in FR MUs. Moreover, just after 2 weeks of the training an enhancement of the mitochondrial network remodeling was present as judged by an increase in expression of Mfn1, Opa1 and an increase in PGC-1α in the slow part of MG. Interestingly, no signs of intensification of mitochondrial biogenesis assessed by ETC proteins content and mtDNA in slow and fast parts of gastrocnemius were found at this stage of the training. Nevertheless, after 8 weeks of training an increase in the ETC protein content was observed, but mainly in the slow part of gastrocnemius. Concluding, the functional changes in MUs' contractile properties leading to the enhancement of muscle performance accompanied by an activation of signalling that controls the muscle mitochondrial network reorganisation and mitochondrial biogenesis belong to an early muscle adaptive responses that precede an increase in mitochondrial ETC protein content.


Assuntos
Adaptação Fisiológica/fisiologia , Mitocôndrias/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Resistência Física/fisiologia , Corrida/fisiologia , Animais , DNA Mitocondrial/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Teste de Esforço , GTP Fosfo-Hidrolases/metabolismo , Regulação da Expressão Gênica , Masculino , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Fadiga Muscular/fisiologia , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Condicionamento Físico Animal/fisiologia , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos Wistar
16.
PLoS One ; 12(12): e0189456, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29232696

RESUMO

We studied the effects of various assay temperatures, representing hypothermia (25°C), normothermia (35°C), and hyperthermia (42°C), on the oxidation of lipid-derived fuels in rat skeletal muscle mitochondria of untrained and endurance-trained rats. Adult 4-month-old male Wistar rats were assigned to a training group (rats trained on a treadmill for 8 weeks) or a sedentary control group. In skeletal muscle mitochondria of both control and trained rats, an increase in the assay temperature from 25°C to 42°C was accompanied by a consistent increase in the oxidation of palmitoylcarnitine and glycerol-3-phosphate. Moreover, endurance training increased mitochondrial capacity to oxidize the lipid-derived fuels at all studied temperatures. The endurance training-induced increase in mitochondrial capacity to oxidize fatty acids was accompanied by an enhancement of mitochondrial biogenesis, as shown by the elevated expression levels of Nrf2, PGC1α, and mitochondrial marker and by the elevated expression levels of mitochondrial proteins involved in fatty acid metabolism, such as fatty acid transporter CD36, carnitine palmitoyltransferase 1A (CPT1A), and acyl-CoA dehydrogenase (ACADS). We conclude that hyperthermia enhances but hypothermia attenuates the rate of the oxidation of fatty acids and glycerol-3-phosphate in rat skeletal muscle mitochondria isolated from both untrained and trained rats. Moreover, our results indicate that endurance training up-regulates mitochondrial biogenesis markers, lipid-sustained oxidative capacity, and CD36 and CPT1A proteins involved in fatty acid transport, possibly via PGC1α and Nrf2 signaling pathways.


Assuntos
Ácidos Graxos/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Temperatura , Animais , Masculino , Oxirredução , Ratos , Ratos Wistar
17.
J Appl Physiol (1985) ; 123(2): 326-336, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28522765

RESUMO

Cardiac function, skeletal (soleus) muscle oxidative metabolism, and the effects of exercise training were evaluated in a transgenic murine model (Tgαq*44) of chronic heart failure during the critical period between the occurrence of an impairment of cardiac function and the stage at which overt cardiac failure ensues (i.e., from 10 to 12 mo of age). Forty-eight Tgαq*44 mice and 43 wild-type FVB controls were randomly assigned to control groups and to groups undergoing 2 mo of intense exercise training (spontaneous running on an instrumented wheel). In mice evaluated at the beginning and at the end of training we determined: exercise performance (mean distance covered daily on the wheel); cardiac function in vivo (by magnetic resonance imaging); soleus mitochondrial respiration ex vivo (by high-resolution respirometry); muscle phenotype [myosin heavy chain (MHC) isoform content; citrate synthase (CS) activity]; and variables related to the energy status of muscle fibers [ratio of phosphorylated 5'-AMP-activated protein kinase (AMPK) to unphosphorylated AMPK] and mitochondrial biogenesis and function [peroxisome proliferative-activated receptor-γ coactivator-α (PGC-1α)]. In the untrained Tgαq*44 mice functional impairments of exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed. The impairment of mitochondrial respiration was related to the function of complex I of the respiratory chain, and it was not associated with differences in CS activity, MHC isoforms, p-AMPK/AMPK, and PGC-1α levels. Exercise training improved exercise performance and cardiac function, but it did not affect mitochondrial respiration, even in the presence of an increased percentage of type 1 MHC isoforms. Factors "upstream" of mitochondria were likely mainly responsible for the improved exercise performance.NEW & NOTEWORTHY Functional impairments in exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed in transgenic chronic heart failure mice, evaluated in the critical period between the occurrence of an impairment of cardiac function and the terminal stage of the disease. Exercise training improved exercise performance and cardiac function, but it did not affect the impaired mitochondrial respiration. Factors "upstream" of mitochondria, including an enhanced cardiovascular O2 delivery, were mainly responsible for the functional improvement.


Assuntos
Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Condicionamento Físico Animal/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Progressão da Doença , Feminino , Coração/fisiopatologia , Camundongos , Camundongos Transgênicos , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/fisiologia , Estresse Oxidativo/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fatores de Transcrição/metabolismo
18.
Growth Horm IGF Res ; 32: 41-48, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28017505

RESUMO

OBJECTIVE: In this study we have determined the effects of 20weeks of endurance running training on the GH-IGF-I axis changes in the context of the skeletal muscle performance and physical capacity level. DESIGN: Before and after the endurance training program a maximal incremental exercise tests, a 1500m race and a muscle strength measurements were performed and the blood samples were taken to determine both resting as well as end-exercise serum growth hormone (GH), insulin-like growth hormone-I (IGF-I), insulin-like growth hormone binding protein-3 (IGFBP-3) and plasma interleukin-6 (IL-6) concentrations. RESULTS: 20weeks of endurance running training improved power output generated at the end of the maximal incremental test by 24% (P<0.012), 1500m running time by 13% (P<0.012) and maximal muscle strength by 9% (P<0.02). End-exercise IGF-I/IGFBP-3 ratio was decreased by 22% after the training (P<0.04) and the magnitude of IGF-I/IGFBP-3 ratio decrease (ΔIGF-I/IGFBP-3ex) was 2.3 times higher after the training (P<0.04). The magnitude of the exercise-induced changes in IGFBP-3 concentration was also significantly higher (P<0.04) and there was a trend toward lower end-exercise IGF-I concentration (P=0.08) after the training. These changes were accompanied by a significantly higher (30%) end-exercise IL-6 concentration (P<0.01) as well as by a 3.4 times higher magnitude of IL-6 increase (P<0.02) after the training. Moreover, there were strong positive correlations between changes in resting serum IGF-I concentration (ΔIGF-Ires) and IGF-I/IGFBP-3 ratio (ΔIGF-I/IGFBP-3res) and changes in muscle strength (ΔMVC) (r=0.95, P=0.0003 and r=0.90, P=0.002, respectively). CONCLUSIONS: The training-induced changes in the components of the GH-IGF-I axis may have additive effects on skeletal muscle performance and physical capacity improvement.


Assuntos
Exercício Físico/fisiologia , Hormônio do Crescimento Humano/sangue , Fator de Crescimento Insulin-Like I/análise , Força Muscular/fisiologia , Resistência Física/fisiologia , Adulto , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Interleucina-6/sangue , Masculino , Músculo Esquelético/fisiologia , Adulto Jovem
19.
Exp Physiol ; 102(1): 70-85, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27748983

RESUMO

NEW FINDINGS: What is the central question of this study? The main aim of the present study was to determine the effect of prolonged moderate-intensity endurance training on the endothelial glycocalyx layer integrity in relationship to the training-induced changes in oxidative stress and antioxidant defence in humans. What is the main finding and its importance? We have shown, for the first time, a protective effect of prolonged moderate-intensity endurance training on endothelial glycocalyx layer integrity, as judged by significantly lower basal and end-exercise serum concentrations of glycocalyx damage markers, i.e. syndecan-1 and heparan sulfate, accompanied by attenuation of oxidative stress and enhancement of antioxidant defence after training in previously untrained healthy young men. In this study, we evaluated the effect of 20 weeks of moderate-intensity endurance training (ET) on the endothelial glycocalyx layer integrity in relationship to the training-induced changes in antioxidant defence. Eleven healthy young, untrained men performed an incremental cycling exercise bout until exhaustion before and after 20 weeks of ET. Endurance training consisted of 40 min sessions, mainly of moderate intensity (∼50% of maximal oxygen uptake), performed four times per week. Venous blood samples were taken at rest and at the end of the maximal exercise test. Muscle biopsies from vastus lateralis were taken before and after the training. Endurance training resulted in a significant increase in physical capacity (P < 0.05) as reflected by an increase in power output reached at the lactate threshold and at maximal oxygen uptake. Training led to a decrease (P < 0.05) in basal and end-exercise concentrations of blood markers of glycocalyx damage (syndecan-1 and heparan sulfate). The lowering of glycocalyx shedding after the ET was accompanied by an attenuation of oxidative stress, as evidenced by a decrease in the basal plasma concentration of isoprostanes, and by an increase in antioxidant defence, reflected by an enhancement in superoxide dismutase 2 protein content in vastus lateralis (P < 0.05). In contrast, training did not induce a significant increase in basal nitrite/nitrate plasma concentration (P > 0.05). Moderate-intensity ET exerts a pronounced protective effect on endothelial glycocalyx integrity at rest and during exercise, probably through an improvement of antioxidant defence that may represent the vasoprotective mechanisms highly responsive to moderate-intensity endurance training.


Assuntos
Células Endoteliais/fisiologia , Exercício Físico/fisiologia , Glicocálix/fisiologia , Resistência Física/fisiologia , Adulto , Antioxidantes/metabolismo , Ciclismo/fisiologia , Células Endoteliais/metabolismo , Teste de Esforço/métodos , Glicocálix/metabolismo , Humanos , Lactatos/metabolismo , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Estresse Oxidativo/fisiologia , Consumo de Oxigênio/fisiologia , Músculo Quadríceps/metabolismo , Músculo Quadríceps/fisiologia , Descanso/fisiologia , Superóxido Dismutase/metabolismo , Adulto Jovem
20.
J Appl Physiol (1985) ; 121(4): 858-869, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27539495

RESUMO

Dynamic resistance training increases the force and speed of muscle contraction, but little is known about modifications to the contractile properties of the main physiological types of motor units (MUs) that contribute to these muscle adaptations. Although the contractile profile of MU muscle fibers is tightly coupled to myosin heavy chain (MyHC) protein expression, it is not well understood if MyHC transition is a prerequisite for modifications to the contractile characteristics of MUs. In this study, we examined MU contractile properties, the mRNA expression of MyHC, parvalbumin, and sarcoendoplasmic reticulum Ca2+ pump isoforms, as well as the MyHC protein content after 5 wk of volitional progressive weight-lifting training in the medial gastrocnemius muscle in rats. The training had no effect on MyHC profiling or Ca2+-handling protein gene expression. Maximum force increased in slow (by 49%) and fast (by 21%) MUs. Within fast MUs, the maximum force increased in most fatigue-resistant and intermediate but not most fatigable MUs. Twitch contraction time was shortened in slow and fast fatigue-resistant MUs. Twitch half-relaxation was shortened in fast most fatigue-resistant and intermediate MUs. The force-frequency curve shifted rightward in fast fatigue-resistant MUs. Fast fatigable MUs fatigued less within the initial 15 s while fast fatigue-resistant units increased the ability to potentiate the force within the first minute of the standard fatigue test. In conclusion, at the early stage of resistance training, modifications to the contractile characteristics of MUs appear in the absence of MyHC transition and the upregulation of Ca2+-handling genes.


Assuntos
Neurônios Motores/fisiologia , Contração Muscular/fisiologia , Fibras Musculares de Contração Rápida/fisiologia , Cadeias Pesadas de Miosina/metabolismo , Condicionamento Físico Animal/métodos , Treinamento de Força/métodos , Adaptação Fisiológica/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Regulação da Expressão Gênica/fisiologia , Masculino , Fadiga Muscular/fisiologia , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Ratos , Ratos Wistar , Volição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...